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We discuss the development of cluster algorithms from the viewpoint of probability theory and not
from the usual viewpoint of a particular model. From the viewpoint of probability theory, we detail the
nature of a cluster algorithm, make explicit the assumptions embodied in all clusters of which we are
aware, and define the construction of free-cluster algorithms. We also illustrate these procedures by
rederiving the Swendsen-Wang algorithm, presenting the details of the loop algorithm for a worldline
simulation of a quantum § =% model, and proposing a free-cluster version of the Swendsen-Wang repli-

ca method for the random Ising model. How the principle of maximum entropy might be used to aid the

construction of cluster algorithms is also discussed.

PACS number(s): 02.70.—c, 02.50.—r, 05.30.—d

I. INTRODUCTION

The development of cluster Monte Carlo algorithms by
Swendsen and Wang [1] and other researchers was a
significant advance in the way in which computer simula-
tions of the equilibrium properties of physical systems are
implemented. These algorithms reduce the long auto-
correlation times that occur as the simulations move to-
ward a critical point. More recently, other algorithms
were developed to reduce similar long times inherent to
other simulations even though they are far from finite-
temperature critical points [2,3]. Inspired by the work of
Kandel and Domany [4], who gave a relatively general
interpretation to cluster algorithms, we now propose a
different perspective and also highlight several essential
ingredients for developing cluster algorithms.

One of our purposes is to detail the number of natural
and reasonable assumptions embodied to all cluster algo-
rithms to date. Our hope is to establish a framework for
a more general use and more general development of
cluster algorithms. Such a framework is needed. The ap-
proach of Kandel and Domany fits naturally onto classi-
cal systems defined on lattices. As such, their specifying
an effective Hamiltonian and local interaction energies is
quite constructive, but is unnatural if applied to quantum
systems. The reason for this difference is directly trace-
able to the Hamiltonian in quantum mechanics being an
operator and not a scalar function.

As observed by Kandel and Domany, the most
effective cluster algorithms are ones in which the interac-
tions between clusters vanish. We call these algorithms
free-cluster algorithms. Again, for quantum systems,
viewing the clusters as interacting or noninteracting may
be unnatural. We feel that it is best to focus on the
configuration weights and directly define procedures to
construct clusters that can be flipped independently. We
will show that such new algorithms follow if a specific
system of linear equations has a nonnegative solution.
This system is, in general, underdetermined, and because
underdetermined systems generally have an infinite num-
ber of solutions, if any solutions exist, finding several
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nonnegative ones may occur. The key issue is then not
the existence of a solution but rather the selection of an
optimal solution, in the sense of computational efficiency.
Our emphasis is defining the general structure of cluster
algorithms. At this time, we only can provide standard
suggestions for efficient algorithm selection.

In defining a cluster algorithm, we will argue that the
standard cluster algorithm is a form of a dual Monte Car-
lo process. This form of Monte Carlo process is a more
general Monte Carlo process in which the configuration
and labeling are viewed jointly. The joint probability for a
configuration and a label can be expressed in terms of
conditional probabilities for a label given a configuration
and vice versa.

The plan of the paper is to establish notation for basic
probabilities and Monte Carlo concepts in Sec. II. In
Sec. III, we define what we mean by a cluster algorithm.
In Sec. IV, we will illustrate the formalism in three
different contexts: the Swendsen-Wang (SW) algorithm
for a ferromagnetic Ising model, a cluster algorithm for
the anisotropic quantum S = quantum system, and the
Swendsen-Wang replica method [2] for the random Ising
model. In Sec. V, we conclude by discussing points for
further investigation. Here, we will emphasize that there
are many ways to construct cluster algorithms, but at this
time we are unaware of any a priori way to ensure one al-
gorithm is optimal compared to others. We emphasize
that our formalism is merely a procedure, as is the
Kandel-Domany procedure, to start the construction of
cluster algorithms. This procedure will help, but will not
define how, to specify the labeling probabilities. We will
discuss in the Appendix, however, how the principle of
maximum entropy might be used to help accomplish this
task.

II. BACKGROUND

The common way to introduce the Monte Carlo
method for simulations of the equilibrium properties
starts with specifying a functional form W(A4) for the
Boltzmann weight of states A4 of the system and for the
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transition probability T(A — A') to carry A to a new
state A’. To ensure the states are produced with the
correct weight, the transition probabilities are almost al-
ways chosen so that the condition of detailed balance
holds. This condition is

W(A)T(A—A")=W(A')T(A'— A4) . (2.1)
We will express (2.1) as

Pr(A'|A)Pr(A)=Pr(A|A")Pr(A4’), (2.2)
where Pr(A4) is the probability of A4 where

Pr(A)=W(A)/Z with Z=T ,W(A) being the parti-
tion function, and Pr( 4’| 4)=T(A4 — A') is the (condi-
tional) probability of A’ given A.

Although (2.2) seems the same as Bayes’s theorem [5],
its implication is different. To be more precise about the
statement of detail balance, if the Monte Carlo process
produces a sequence of states ..., X, X, X, ...,
then we can write the detailed balance condition as

Pr(X,,,;=A'|X,= A)Pr(X,=A)

=Pr(X,,=A4|X,=4")Pr(X,=4"). (2.3
On the other hand, Bayes’s theorem is expressed as
Pr(X,,=A'|X,=A) Pr(X,= A)
=Pr(X,=A|X,,=A4")Pr(X,=4"), 24

where n and m are any pair of steps along the Markov
chain. Bayes’s theorem follows from the standard rela-
tion between joint and condition probabilities

Pr(A4,A4')=Pr(A'|A)Pr( 4) . (2.5)

We will use the more detailed notation whenever we feel
the distinction between the two conditions needs em-
phasis. The main point is, however, that in both cases we
are dealing with probabilities. Thus, a number of rela-
tions automatically hold. The detailed balance condition
is a rather special constraint imposed on the probabilities
while Bayes’s theorem is generally applicable to any con-
ditional probability.

A. Standard Monte Carlo method

A Monte Carlo simulation of an equilibrium process
approximates the sum over all states of a system by a sum
over a smaller set of states chosen with the correct
Boltzmann weight. Each state is, in the language of
probability theory, an event A4, and the Monte Carlo pro-
cess seeks to produce these events with a probability
Pr(A). The Markov process in the Monte Carlo pro-
cedure is defined by the conditional probability Pr( 4’| 4)
of state A’ given A. For this process to produce the
states with probability Pr( 4), several conditions must be
met [6]:

Pr(4)>0, (2.6)
3 Pr(4)=1, 2.7
A

2.8)

S Pr(A|A")Pr(A')=Pr(A4) .
e

If A can take N different values, then there are N? ele-
ments for Pr(A|A’). By constituting only O(N) con-
straints, the above equations illustrate the considerable
freedom that exists in defining the Monte Carlo process.
Typically, N is a very large number so directly selecting
Pr( A| A’) from these equations is not practical.

Normally, a Monte Carlo process is specified so that it
satisfies the detailed balance condition (2.2), which is a
stronger condition than (2.8), but detailed balance still
does not uniquely define Pr(A’| 4). The transition prob-
ability is usually defined, in one of two ways, in terms of
the ratio Pr( A’)/Pr( A). These different ways define the
Metropolis and symmetric algorithms [7]. For a simple
version of the symmetric algorithm

Pr(A'|4)=R/(1+R), (2.9)
where R =Pr( A4’')/Pr( A).

The heat-bath algorithm defines Pr(A4’'|4) in still
another way. In the heat-bath algorithm [8], one imag-
ines the given state A4 being placed in contact with a heat
bath and allowed to fluctuate through various states in a
manner consistent with the Boltzmann distribution
Pr( 4). After a while, when the heat bath is removed, this
system is left in some new state 4’ with a probability
Pr( A’). The key feature is that the new state is chosen in
a manner independent of the current state, i.e.,
Pr(A’'|A)=Pr(A’). We will call a heat-bath algorithm
those algorithms that choose the new state independently
of the old state.

B. Dual Monte Carlo method

In a standard Monte Carlo algorithm, the states of the
system are most naturally viewed in terms of the local
variables in the Hamiltonian. These variables might sim-
ply be the values of the Ising spins at each site in a lattice,
the positions of gas atoms in a box, electrons on lattice
sites, etc. With these variables, a Monte Carlo process, as
described above, is created by specifying the transition
probability Pr( 4’| A) where A’ is obtained from A, for
example, by a single flip of the Ising spin at a given lattice
site, the displacement of a single gas atom, etc. A num-
ber of years ago, it was recognized that the Monte Carlo
process may be enhanced by introducing another set of
events and performing the Markov process in a joint
space [6,9]. We will adopt this modification and argue
that cluster algorithms are a special case of a dual Monte
Carlo process.

To develop our viewpoint, we first remark that a stan-
dard cluster algorithm starts with a state X,= 4 and la-
bels it as Y, =B by some prescription. The label defines
clusters, and the clusters are then flipped to produce a
new state A’ that can be labeled as B’. The process is cy-
cled to produce the sequence

+—>A—>B—>A'"—->B'—>A"—->B"— ---

(2.10)

A cluster algorithm, however, can be also viewed more
generally as the sequence

+—>(A,B)—>(A',B')—>(A",B")— - (2.1
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From this point of view, we would want to construct a
Markov process that produces Pr( 4,B)=lim,_, Pr(X,
= A,Y,=BRB) and its limiting probability, i.e., the transi-
tions are viewed as from ( 4,B) to (A4',B’) and not just
from A to A’. Several ways exist to produce this se-
quence. One such way is to specify transition probabili-
ties Pr( A'| 4,B) and Pr(B’'| 4,B), which satisfy the fol-
lowing extended detailed balance condition

Pr(X, ., =A'|X,=A,Y,=B)Pr(X,=A,Y,=B)
=Pr(X,,,=A|X,=A',Y,=B)Pr(X,=A4',Y,=B) ,
(2.12)
Pr(Y,,,=B'|X,,,=A',Y,=B)Pr(X,,,=A",Y,=B)
=Pr(Y,,,=B|X,,,=A,Y,=B")
XPr(X,.,=A',Y,=B’) . (2.13)

Because at equilibrium the joint probability is the same
for any pair of Monte Carlo steps, we rewrite the above
equations more compactly as

Pr(X, ., =A'|X,=A,Y,=B)Pr(A4,B)
=Pr(X, ., =A|X,=A',Y,=B)Pr(4",B) ,
Pr(Y,,,=B'|X,.,=A',Y,=B)Pr(A',B)

(2.14)

=Pr(Y,,,=B|X,.,=A4,Y,=B’)Pr(A',B’) .
(2.15)
The transition probabilities Pr(A4|4’,B) and

Pr(B| 4,B’) specify the algorithm. They must satisfy
Pr(A,B)=3 Pr(A4|A',B)Pr(A’,B)
<

=3 Pr(B| 4,B’)Pr(A4,B’) . (2.16)
5

In addition, we must also have

r(4)=3 Pr( 4,B) (2.17)
B

to produce the desired Boltzmann weight. We also have
that

Pr(B)=73 Pr( 4,B) . (2.18)
4

In a cluster algorithm, we seek to exploit the freedom we
have in the choice of Pr(B) to produce an efficient and
effective Monte Carlo procedure.

C. Heat-bath transition probabilities

While Egs. (2.14) and (2.15) express an elegant duality
between the two sets of events, in a cluster algorithm
these equations are used with several implicit assump-
tions. Most cluster algorithms of which we are aware im-
plicitly assume that Pr( 4’| 4,B) is independent of 4 and
Pr(B’| A,B) is independent of B. We will adopt these as-
sumptions and refer to the resulting algorithms of being
of the heat-bath type.

With the heat-bath assumptions and the use of the
basic theorem of joint probabilties,

Pr(A,B)=Pr(B| A)Pr(A)=Pr( A|B)Pr(B) , (2.19)
(2.14) and (2.15) reduce to
Pr(X,,,=A'|Y,=B)Pr(A|B)
=Pr(X,,,=A|Y,=B)Pr(A4’'|B), (2.20)
Pr(Y,,,=B'|X,, ;= A4')Pr(B|4")
=Pr(Y, ., =B|X,4,=A4)Pr(B'|4") . (2.21)
It follows that
Pr(X,,,= A|Y,=B)=Pr( 4|B) , (2.22)
Pr(Y,,,=B|X,,,= A)=Pr(B| 4), (2.23)

which means that we should choose the transition proba-
bilities so they agree with the limiting conditional proba-
bilities. Therefore, these equations, and hence the algo-
rithm, depend only on the conditional probabilities
Pr( A|B) and Pr(B| A). They define a dual algorithm of
the heat-bath type that produces Pr( 4) as the limiting
distribution of the Markov chain.

If we are given Pr( 4,B), the transition probabilities
Pr( A|B) and Pr(B| A) are easily found. Usually, we are
given Pr( 4) and specify Pr(B|4). By (2.19), these two
quantities are sufficient to specify Pr( 4,B). Having just
Pr(A) and Pr(A|B) is, in general, insufficient to fix
Pr( A4,B), but as we discuss below, situations exist where
we can proceed in this manner and at the same time
achieve considerable advantage in constructing special
classes of cluster algorithms.

III. CLUSTER ALGORITHMS

A. Local labeling and other background

In most existing cluster algorithms, the labeling of the
whole system is done by labeling individual local units.
In this subsection, we state this process in general terms.
First, we consider systems where the given state A4 can be
represented by a set of L local units described by the vari-
able q;

A={a,a,,...,a.} . (3.1

Each local unit may consist of several local elements,
each described by a variable 5;. Hence, we can also ex-
press the state 4 by the set

A={51,85,...,5x} , (3.2)

where L < N.

For the Ising model, the local units could be bonds or
plaquettes, for example. If the local units were the bonds,
the local elements would be the lattice sites on the bond.
For the Ising model, s; is usually a two-state (one-bit) site
variable whose values are a member of the set { +1,—1},
and the values of a; are one of the four possible states
that the bond i may assume, i.e., the value of aq; is a
member of the set {(—1,—1),(+1,+1),(—1,+1),
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(+1,—1)}. The Ising model example also illustrates
that, in general, a local element belongs to multiple local
units, as a given site usually belongs to more than one
bond.

We will restrict ourselves to systems for which we can
write W(A4)=][;w(a;). In many respects, this condition
is not very restrictive. The factorization is true for most
classical Monte Carlo simulations and for some quantum
Monte Carlo simulations such as those using the world-
line method. In the worldline quantum Monte Carlo
method for a one-dimensional system of electrons, for ex-
ample, the local unit for an electron of a given electron
spin is a plaquette that can have 16 different states of
electron occupancy at its corners but only 6 of these
states are comnsistent with the conservation of electron
number. By considering only allowed states, one can gen-
erally express W ( A4) in factored form.

Cluster algorithms generally assume that one can ex-
press B in terms of a set of local labels b;

B={b,b,,...,b.} .

The role of these labels, assigned one to each local unit, is
to define the clusters, and the values of b; by choice gen-
erally assume only a finite number of values. In the SW
algorithm, the local labels of ‘“frozen” or ‘“deleted” are
assigned to bonds. For the loop-flip algorithm for the
worldline quantum Monte Carlo method, the local labels
are pairs of line segments assigned the shaded plaquettes
of the system. The two different segments sometimes be-
long to two different clusters (loops). Cluster algorithms
also generally assume Pr(B| 4)=[],;Pr(b;la;).

(3.3)

B. Clustering

The essence of cluster algorithms is the changing of the
value of a set of many local elements, not the local units,
in a coherent manner. Using our language of dual Monte
Carlo, we will now define a cluster algorithm more ex-
plicitly. In what follows, we only consider the case where
both the state space and the label space are discrete. The
generalization to continuous variables is, for the most
part, straightforward.

We start by defining a clustering C as a function that
maps the set of the serial numbers of the local elements
N={1,2,...,N} (i.e, sites, bonds, plaquettes, etc.) to a
set N, of the serial numbers of the clusters
{1,2,...,N_}. The integer N, is the number of clusters
and is less than or equal to N. The value of C(i) is the
serial number of the cluster to which the local element i
belongs. The labeling process provides the basis for con-
structing this function.

Many ways to define clusters exist. For a collection of
sites, one can create a graph by drawing a number of lines
connecting pairs of sites. Those sites connected to each
other, but disconnected from all other sites, form a clus-
ter. A specific graph may contain several clusters. For a
given number of sites, many different graphs may exist.
Such a graphical procedure is at the heat of the Mayer
cluster expansion often used in analytic studies of real
gases [10].

In the SW algorithm, something more complicated is
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done. The connection (the label ““a frozen bond”) between
two sites depends on the combined state of the Ising vari-
ables at those sites. Only sites mutually aligned are con-
nected and then only with a probability chosen to ensure
when the cluster is flipped that the detailed balance con-
dition is satisfied. In the SW algorithm, sites in a cluster
all have the same value of the Ising spin, and the flipping
process is easily defined as changing the value of spin for
all sites in the cluster. For the Ising model, the original
Ising spins, each of which has the value of 1 or —1, map
to a set of cluster spins, each of which also has the value
of 1 or —1. The beauty of the SW algorithm is that after
this mapping the cluster spins do not interact. In sum-
ming over all possible configurations of clusters spins, one
can place each cluster into any one of its two possible
states.

In other algorithms, even more complicated things are
done. In the Kandel-Domany algorithm for the fully
frustrated Ising model [3], the Evertz-Luna-Marcu algo-
rithm for the six-vertex model [11], and the recent algo-
rithms for the worldline quantum Monte Carlo method
[12,13], the natural local unit is a plaquette that consists
of some local elements (sites), and the local labels are a
set of lines connecting these sites pairwise. In these algo-
rithms, loops replace clusters. Similar to the SW algo-
rithm, each loop has one-bit degree of freedom, i.e., +1
or —1, which we denote by x; where i specifies the loop.
In contrast to the SW algorithm, not all the sites on the
loop have the same state of plus or minus one, occupied
or unoccupied, etc. Therefore, the state of a site in the
loop does not necessarily have the same value as the clus-
ter variable x;. Flipping the loop takes its state from one
value of x; to another. What the above algorithms share
with the SW algorithm is one-bit cluster variables x;, the
stochastic assignment of the labels, the free flipping of the
clusters, and the maintenance of detailed balance.

Even more complicated situations can exist. Almost
all cluster or loop algorithms to date deal with local
states that have only two possible values: spin up or spin
down, occupied or unoccupied, etc. Clearly, richer physi-
cal models may have more than two values and may lead
to a very rich parameterization of the state of individual
clusters or loops. In this paper, we will be implicitly ad-
dressing quite general forms of clusterings. We assume
that for a given state A4 (3.1), we can assign a label B (3.3),
from which we can form N, clusters. Each cluster can be
assigned a variable x; to describe its “state.” In general,
this cluster variable is not necessarily a one-bit variable.
For a given cluster, the value of x; is just one from a set
of values assigned to the allowed states of the cluster.

We define ®(B) as the set of all allowed configurations
consistent with the label B, i.e., ®(B)={ 4|Pr( 4,B)70}.
In any cluster algorithm, for the global label B, an arbi-
trary state in ®(B) is specified by a set of cluster variables

X={x1,x2,...,ch} ) (3-4)
in such a way that the state of a local element depends
only on the cluster variable x;, where i specifies the clus-
ter to which the element belongs. In more formal

language, the essence of clustering is represented by the
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existence of some one-to-one mapping f € that maps the
set of cluster configurations X onto ®(B). Of course,
such a mapping depends on the label B. What we will call
a cluster Monte Carlo algorithm is a dual Monte Carlo
process defined by (2.14) and (2.15) where at least one
nontrivial mapping f€ exists for almost all B for which
Pr(B)>0, Here, a trivial mapping, which exists for any
®(B), is the one in which there is only one cluster.

C. Special cluster algorithms

In what follows, we will mainly be concerned with the
question, “Can we create a cluster Monte Carlo algo-
rithm in which the clusters can be flipped independent-
ly?” because we expect that such a cluster algorithm is
advantageous both for the computational simplicity and
for reducing autocorrelation times.

As stated before, a defining property of a cluster algo-
rithm is the limited range of states to which the final state
A is restricted by the label B. We can express this situa-
tion by writing the conditional probability Pr( 4|B) as

Pr(A|B)=W'(A)A(A,B)/N(B) , (3.5)

where the weight function W’( 4) is to be specified, N (B)
is the number of members of ®(B), and A( 4, B) is defined
by

1, if A€®P(B)

A(4,B)= 0, otherwise .

(3.6)
This definition for Pr( 4|B) is not unique, but it has to be
chosen so that it satisfies such relations as

1=3Pr(4|B), 3.7
A

Pr(A4)=3Pr( A|B)Pr(B) ,
B

(3.8)

which are intrinsic to conditional probabilities.

In the language of the last subsection, the conditional
probability Pr( A|B) means that after assigning a label B,
we should pick a value X with probability

Pr(X)= W'(fC(X))/z W'(f9X)) . (3.9)

X

Then, we map X into ®(B) with the function f € to obtain
the final state 4’. We comment that conditional probabil-
ities cannot in general be written in the form of (3.5). In
other words, when solutions exist, (3.5) defines a special
class of cluster algorithms. To our knowledge, existing
cluster algorithms belong to this class.

We can obtain an important additional subclass of
cluster algorithms by setting W’'( A4)=1. This selection
implies that for any cluster parametrization f€ of ®(B),
Pr(fS(X)|B) is just a constant that is independent of X.
Therefore, we can generate the final state A4 consistent
with the label B by picking with equal probability a set X
at random, and then mapping this set into ®(B) by the
function f€. Because of the clustering, the state of the
system is a direct product of the states of the clusters, we
pick an X by picking independently and uniformly the x;
from the set of possible states of cluster i and collecting

these values to form X ={x,x,,... ,xNC}. Roughly
speaking, the algorithms in this subclass are character-
ized by clusters that do not interact with each other.

As already noted, in a dual Monte Carlo algorithm of
heat-bath type, all we need to specify is Pr( 4,B). To do
this for the class of algorithms characterized by (3.5), we
start by writing Pr( A)=W(A)/Z where Z=73, ,W(A4)
and then replacing Pr( 4|B) in (2.17) by (3.5), we have

SA(A,B)V(B)=W,(A), (3.10)
B
where the weight W ( 4) is decomposed as
W(A)=Wy(A)W'(A) (3.11)
and
V(B)=Z Pr(B)/N(B) . (3.12)

The first factor W, is used in determining the labeling
probability; the second factor W', the flipping probability
of clusters. Once we choose W’'(A) and determine
W,(A4) by (3.11), Eq. (3.10) can be viewed as a linear
equation with undetermined variables V(B). We em-
phasize that neither the uniqueness of the solution to
(3.10) or its existence is guaranteed. If we obtain a solu-
tion for V(B) that satisfies (3.10), we can calculate
Pr(B| A) by

Pr( A4|B) Pr(B)

Pr(B|A)= Pr(4)
_ [W'(A)A(A4,B)/N(B)][V(B)N(B)/Z]
W(A)/Z
_ A(4,B)V(B) (3.13)
Wy A)

In this way, we can determine both Pr( A|B) and
Pr(B| A) for a given weight W ( 4).

D. Cluster algorithms with local labeling rules

We have reduced the task of constructing a cluster al-
gorithm to solving (3.10) for ¥V (B), but we still have too
many degrees of freedom in the algorithm to fix since in
many cases the dimensionality of the label space on
which Pr(B) is defined is by far greater than that of the
configuration space. Therefore, to reduce further the de-
grees of freedom in the algorithm to make the problem
tractable, we will consider a situation where W(A4),
W’'(A), A(A,B), and V (B) can be decomposed into prod-
ucts of local factors

w(=TJw(a;), (3.14)
Wi A)=TJw'a,) , (3.15)
ACA4,B)=[]8a;,b,) , (3.16)

(3.17)

V(B)=T]v(b,;) .

In other words, we are considering cluster algorithms
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where the rules for generating a new label B’ for the
whole system are given in terms of a collection of rules
for the local elements. This situation is the case, for ex-
ample, in the Swendsen-Wang algorithm for classical
Potts models. Now, we can arrive at a set of equations
with the number of degrees of freedom of order O(1)

>68(a,bv(b)=wy(a) , (3.18)
b

where wy(a)=w (a)/w’(a). This local equation is of cen-
tral importance to this paper. Once we get a solution
v (b) of this equation, we can obtain the transition proba-
bility Pr(B| 4) as follows:

Pr(B| A)=]][Pr(b;la;) , (3.19)
where
Pr(bla)= 2200 (0) (3.20)
wola)

As we have seen, once a label b is chosen for a local
unit, the state a of this unit can have only the values al-
lowed by the matrix 6(a, b); that is, only the a’s for which
8(a,b)70 are possible. In order that this restriction on a
leads to clusters in the whole system, the label b must
represent some clustering of the local unit, i.e., 8(a,b) has
to satisfy come condition. In other words, b must be
such a label that breaks up local elements in the local unit
into several groups and locks the elements in each group
into a single degree of freedom.

IV. APPLICATIONS

We now discuss several cluster algorithms from the
point of view just developed. All these algorithms will be
ones with local labeling rules.

A. Swendsen-Wang algorithm for the Ising model

The Swendsen-Wang algorithm [1] is an example of a
cluster algorithm with a local labeling rule, which is a
free-cluster algorithm if the external magnetic field is
zero. We will derive an algorithm for nonzero magnetic
field that will reduce to the zero-field Swendsen-Wang al-
gorithm. The Hamiltonian is

(4,) i

4.1)

with Ising variables S;==1. For this model, we take the
local elements to be the lattice sites, the local units to be
the bonds specified by (i,j), and the local variables s; to
be the S;. The other local variables a; have at each i one
of four values (—1,—1), (1,1), (—1,1), and (1,— 1), which
we will identify as 1, 2, 3, and 4. These values are the four
allowed spin orientations on the bond.

The decomposition of the Boltzmann weight
W (A)=exp(—BH) is
W(A)=Wy,(A)W'(A), 4.2)

where

W'( A)=]]exp(BHS;) , (4.3)
Wo(A)=T]exp(BJS;S;)=[Jwla ;) . (4.4)
) (i)

Here, the local weight w (a) is
w)=w)=r, wB)=wd)=r"}, (4.5)

where r=exp(BJ). Thus, there are only two possible
breakup operations, binding the two sites or not binding
them. Accordingly, there are three possible local labels:
the label b =1 has 8(a,b)=1 when a =1 and 2, and the
label b =2 has 8(a,b)=1 when a =3 and 4. These two la-
bels correspond to binding two sites. The label b =3 has
8(a,b)=1 for all a and corresponds to nonbinding.
In matrix form, these three decompositions are

S8(a,b)=

0
0
1 (4.6)
1

S O = =
—

Using the fact that the w(1)=w(2) and w(3)=w (4) we
can depict this matrix as in Fig. 1. Equation (3.18) for
the labeling probability reduces to

v(D+v(3)=r,
v(2)+v(3)=r"1.

Solving these equations, we obtain a set of solutions that
depend on a free parameter p,

v()=r—p, v2)=r'=p, v3)=p, 4.7)

where 0<p <r ™!, This last constraint is necessary to en-
sure v (b) is nonnegative.

What is the best choice for p is, in general, a difficult
question. However, the simple guideline that in a free-
cluster algorithm we should make the resulting clusters as
small as possible helps us choose a proper value. This
guideline is understandable if we note that because the
flipping probability of every cluster is 1, the autocorrela-

b 1 2 3
a Oo——oO o——0 (e] o
1 0 1
1-p 0 p
OO0 0 I !
0 l-p/r p/r

FIG. 1. The labels and the labeling probabilities for the
Swendsen-Wang algorithm. Dashed lines in the leftmost column
represent unsatisfied bonds; the solid lines, satisfied bonds. The
upper item in each entry is the matrix element 8(a|b); the lower
item, the labeling probability.
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tion in the sequence of Monte Carlo data seems likely to
decrease faster with a large number of small clusters than
with a small number of large clusters. In the present
case, this guideline suggests that we choose the largest
possible p, i.e., p=r !, because v(3)=p is proportional
to the probability of “cutting” the connection, which
seems necessary to promote cluster generation. Thus, our
final result for the local labeling weight v is

v()=r—r~,, v(2)=0, v(3)=r"". (4.8)
By using (3.20), we have
1-r 2 1-r7200
Pr(bla)= 0 0 00]. (4.9)
r—2 r—? 11

If a bond (i,j) is called satisfied when JS;S; is positive
and unsatisfied otherwise, this local conditional probabili-
ty tells us to cut all unsatisfied bonds and cut satisfied
bonds with probability e 2%/, This prescription is noth-
ing but the ordinary clustering rule for the Swendsen-
Wang algorithm.

Because of (3.9) and our choice of W’ (4.3), the flipping
probability of each cluster is easily computed. The result
is

-1

We

Py, = (4.10)

wc_1+wc '
Here w. =exp(BHM_) where M, is the magnetization of
the cluster whose absolute value equals the number of lo-
cal elements in the cluster.

B. The Swendsen-Wang replica Monte Carlo method
for spin-glass systems

The replica Monte Carlo method [2] was proposed by
Swendsen and Wang for spin-glass systems. Instead of
simulating a system sequentially at different tempera-
tures, they treat simultaneously several independent re-
plicas of the system at different temperatures. They do
this by considering a pair of systems at a time. The Ham-
iltonian for the pair is

H=— 3 r, 3 J, ;SHSH (r;<r,),
u=12 (ij)

(4.11)

where S{#) is an Ising variable and FA j|=J. A site is
specified by two indices (i,u). The difference r, —r, scales
the temperature difference between the two systems.

In the replica Monte Carlo algorithm, a local element
is a site (i,u), and a local unit [i,j] is a quartet of sites
(i,1), (i,2), (j,1), and (j,2). For this algorithm, the
decomposition (3.11) is

W'(A)=exp(—BH) ,
Wod)=1.

(4.12)
(4.13)

In other words, all the weight is in the flipping probabili-
ty of clusters. The algorithm is not a free-cluster algo-
rithm. The labeling procedure is deterministic, meaning
that given A4, A(A4,B) is nonvanishing (i.e., unity) only
for one B and that

Pr(B|A)=A(A4,B), 4.14)
A( A,B)zns(al,bl) . (415)
1
On the other hand, (3.5) reduces into
Pr(A|B)=W(A)A(A,B)/N(B) (4.16)

and tells us that as long as the final state is allowed under
the label B, the transition probability is determined by
the original weight W ( A4). From (2.9), it follows that the
probability of flipping a cluster is given by

P=R/(1+R), (4.17)

where R is the ratio of the weights of the state A before
the flip and the state A’ after the flip, i.e,
R=W'"(A"Y/W(A)=W(A")/W(A).

The labeling rule is that if both bonds (i,1)—(j,1) and
(i,2)—(j,2) are satisfied, or both are unsatisfied, we
“freeze” the local unit. Here, freezing is the label under
which the four sites are bound to each other. If one bond
is satisfied and the other is unsatisfied, a vertical breakup
is applied, which means the assignment of the label under
which (i,1) is bound to (i,2) and (j,1) is bound to (j,2).

If we call “red” a pair of sites for which S{’S{? is neg-
ative and call “black” any other pair, the resulting clus-
ters are groups of red or black sites surrounded by the
other color. Flipping a cluster does not change the color
of the cluster, since for any i, the two sites (i,1) and (i,2)
are bound to each other. Therefore, this procedure does
not constitute an ergodic Markov process. It needs to be
combined with an ergodic process to make the entire
Markov process ergodic.

We also note that any local unit [, ;] for which i and j
belong to different clusters has one and only one satisfied
bond. Thus, if we flip a cluster that includes the site i, this
local unit contributes to the ratio R in (4.17) with a factor
exp[2BJ(r,—r;)] or exp[—2BJ(r,—r,)], according to
the original orientation of spins. In particular, the flip-
ping probability of a cluster in this algorithm becomes }
when r,=r,. This situation illustrates why this algo-
rithm is intended for a system with small r, —7;: When
r,—r; is large, the flipping probability of a large cluster
is in most cases very small, and the algorithm becomes
ineffective.

C. An ergodic, free-cluster, replica method

Following our general procedure of constructing a
cluster algorithm, we now will construct an ergodic,
free-cluster version of the replica Monte Carlo method.
For this algorithm, we choose the weight W’'( 4) to be
unity and W, =exp(—BH).

We consider four types of breakup operations (Fig. 2).
The first one (b =1) is a horizontal breakup in which
(i,u) is bound to (j,u). The second one (b =2) is where
(i,2) is bound to (j,2) but (,1) and (7,2) are bound to no
site. The third (b =3,4) is the previously used vertical
breakup. The last one (b =5) has no site bound to any
other site. We note that two labels correspond to a verti-
cal breakup; however, these two labels are equivalent be-
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b 1 2 3,4 5
Q'—,O o O ) (o) o]
o——o0 o——-o0 o o]
=0 1 1 0 1
FL N 1-a+b-ab a-b 0 ab
Qa0 0 1 1 1
. -b b-ab
o0——-oO0 0 ga_ a b
Q0 0 0 1 1
Shiio 0 0 l-a a
OO 0 0 1
il 0 0 0 1

FIG. 2. The matrix elements 8(alb) and the labeling proba-
bilities for the ergodic, free-cluster, replica Monte Carlo method
for spin-glass systems. The upper item in each entry is the ma-
trix element 8(a|b); the lower item, the labeling probability. The
vertical lines in each diagram in the top row represent bonds at
the same location but in different replicas.

cause of the symmetry. Therefore, we search for a sym-
metric solution with respect to these two labels, that is, a
solution for which v(3)=v(4). For the same reason,
these two labels are represented in Fig. 2 by a single
column (the third column). Since the matrix &(a,b) is the
upper item of each entry in Fig. 2, the weight equation
becomes

v(D)+v(2)+v(5)=1,
v(2)+v(3)+v(5)=p,
v(3)+v(5)=¢q,

(4.18)

v(5)=pq ,

where p =exp(—2fr,) and g =exp(—2f8r,). The solu-
tion is

v()=(1—p)1+q),
v(3)=v(4)=¢q(1—p),

V=T 4.19)
v(5)=pq . '

As a result, the labeling probability is given by the lower
item of each entry in Fig. 2.

As we can see in Fig. 2, when r; =r,, the label b =2 is
not assigned to any unit. In this case, we can argue that
the resulting cluster size is generally smaller than that for
the Swendsen-Wang re;replica algorithm: First, we note
that no horizontal binding occurs in any unit where one
bond is unsatisfied and the other is satisfied. This type of
bonding also occurs in the Swendsen-Wang replica algo-
rithm; however, in the present algorithm, even the verti-
cal bonds are missing with a finite probability. Reduction

in cluster size follows partially from this property. Addi-
tionally, no binding is applied to any unit where two
bonds are unsatisfied while complete freezing is applied
to such a unit in the Swendsen-Wang case. This second
fact reduces the average cluster size even further. Still
another reduction effect exists: For a unit where two
bonds are satisfied, the breakup b =1 is applied only with
a finite probability while this type of horizontal binding
occurs with probability 1 in the Swendsen-Wang case.
This effect can decrease the cluster size. Therefore, the
present algorithm has at least two important differences
from the previous one in the case where r, =r,: ergodici-
ty and smaller clusters.

On the other hand, when 7, <r,, smaller clusters are
not guaranteed because of the existence of the label b =2,
which has no counterpart in the other algorithm. This la-
bel is necessary for the present algorithm to be a free-
cluster algorithm. If we abandon this free-cluster proper-
ty and take the difference r, —r; into account in the flip-
ping probability and not in the labeling probability, then
we obtain another algorithm that is similar to the
Swendson-Wang algorithm, but is one that is ergodic and
produces smaller clusters. We believe, however, the free-
cluster version of the algorithm presented here is at least
equivalent to this alternative in terms of efficiency.

D. A free-cluster algorithm for the § =] XXZ
quantum spin model

The loop algorithm [11,14] recently proposed for the
massless six-vertex model can be applied to the quantum
S =1 problem, since in the worldline quantum Monte
Carlo formulation of the problem, configurations with
the quantum Boltzmann weight are equivalent to those of
a special case of six-vertex model [11]. Because the de-
tails of the application of cluster methods to quantum
spin problems have not been explicitly presented else-
where in detail, we will now give them using the language
established in the present paper.

The Hamiltonian is

H=—J3 [Mofoj+olo¥)+oio]],

(i,u)

(4.20)

where o (u=x,y,z) is a Pauli operator and the constant
A describes the anisotropy of the problem. By using the
Suzuki-Trotter decomposition formula, we can map the
original problem into a problem with classical degrees of
freedom in the next higher dimension. In what follows,
we focus on this restatement of the problem. We will
refer to the axis along the additional dimension as “verti-
cal,” and to the other axes as ‘“horizontal”.

The local element is a site and a local unit is a shaded
vertical plaquette. A site is specified by a set of indices
(i,t) where i specifies the horizontal location and ¢
specifies the vertical location. The local variable defined
on each site is a one-bit variable with the values of O or 1,
corresponding to a down and an up z component of spin.
A vertical plaquette is one formed by four neighboring
sites with two vertical edges and the other two edges be-
ing horizontal. Some fraction of vertical plaquettes are
shaded. Which plaquettes are shaded depends on both
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the original lattice and the decomposition of the original
weight by the Suzuki-Trotter formula. The shaded pla-
quettes are distributed across the whole lattice in such a
way that no two local units share an edge (but they do
share corners). Since a local unit consists of 4 sites, the
variable defined on a unit can, in general, have 16 values.
For the present problem, however, a local weight is van-
ishing for some of these values. We will represent a local
state a, of a unit p in terms of the four sites (i,2), (j,),
(i,t +1), and (j,t +1) that belong to p as follows:

@y ={n3 NG ne i+ 1M Ge+1) - 4.21)

The weight for a local unit (i.e., a shaded plaquette) is
nonvanishing only when n . +n)=ng;,+1) 1 +1)
As a result, a local unit can have only 6 out of 16 possible
states. We denote these 6 statesby 1, 1,2, 2, 3, and 3. In
the site representation stated above, these states are

1={0,0,0,0} , 1={1,1,1,1},
2={1,0,1,0} , 2={0,1,0,1} , (4.22)
3={1,0,0,1} , 3={0,1,1,0} .

Besides the constraint mentioned above, another restric-
tion to the space of states with nonvanishing weight
exists, namely, n;,=n;,+;, when the vertical edge
(i,#)—(i,t +1) does not belong to any shaded plaquette.
The space @ is defined as the set of all states {n;,} that
satisfy these two constraints.

The Boltzmann factor becomes

w(4)=[Jw(a,), (4.23)
2

w(l)=w(1)=exp(£7),

w(2)=w(2)=exp( F7)cosh(2A7) , (4.24)

w(3)=w (3)=exp( F 7)sinh(2A7) ,

Here, 7 is B|J| /m for a Trotter number of m. In the case
of ferromagnetic models (J >0), we take the upper sign.
We take the lower sign for antiferromagnetic models
(J <0), if the model is on nonfrustrated lattices such as a
square lattice.

First, we consider the ferromagnetic case. The four la-
bels are depicted in Fig. 3(a), and the resulting weight
equation is

v(0)+v(2)+v(3)=exp(T),

v(1)+v(3)=exp(—7)cosh(2AT) , (4.25)
v(1)+v(2)=exp(—7)sinh(2A7) .
The solution is
v(0)=e"™—p,
v(1)=(—p+e*~V7) 2,
(4.26)

U(2)=(P __e"(2l.+1)‘r)/2 ,
U(3)=(p +e—(21+l)f)/2 R

where p is an adjustable parameter. Here, the guideline

we use to determine p is the same as we used to determine
p in the Swendsen-Wang algorithm for the Ising fer-
romagnet: We make the clusters as small as possible. In
the present case, this means making v (0) as small as pos-
sible. The bound for p is given by

p <minfe”,e?* 7} 4.27)

Therefore, in the case of XY-type anisotropy, i.e., A>1,
we take p =e”. The resulting labeling probability is given
in Table I. From this Table, we note that the probability
of assigning a breakup of type O is zero. In other words,
the resulting clusters are simple closed loops with no
branches.

On the other hand, in the case of Ising-like anisotropy,
i.e, A<1, we take p =e® D7, Hence, the labeling prob-
ability becomes the one shown in Table II. In this case,
the branching of loops is inevitable.

Next, we consider the antiferromagnetic case. In this
case, we assign the breakup of type O to the states 2 and 2
with finite probabilities [Fig. 3(b)], in contrast to the fer-

a)
bl o 1 2 3
o—0
N[ . X [ ]
oO—0
o o0
1 0 1 1
o O
o e
0o 1 0o 1
o o
o e
o 1 1 0
® O
b)
bl o 1 2 3
o—20
N[ . X[
OO0
o O
0O 0 1 1
o O
o e
11 0o 1
o e
o e
o 1 1 0
® O

FIG. 3. The labels and matrix elements 8(a|b) for the loop al-
gorithm for (a) ferromagnetic and (b) antiferromagnetic quan-
tum spin systems with §= 1.
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TABLE I. The labeling probabilities for XY-like ferromagnets.

b=0 b=1 b=2 b=3
- (l_eAZ(}d—l)f) (1+e—2(h+1)¢)
a=1,1 0 0 > 5
_ (92(k71)1_1)82T (e—2(A+1)‘r+l)e27
=2,2 R e 0 e = Thle
e 0 2 cosh(2A7) 2 cosh(2A7)
2A—Dr__ 27 —_p2A+ )T 27
=373 0 (e 1)e (—e +1)e 0

2 sinh(2A71)

2 sinh(2A7)

romagnetic case where we assigned it to the states 1 and
1. The weight equation is

v(2)+v(3)=exp(—7),

v(0)+v(1)+v(3)=exp(7T)cosh(2AT) , (4.28)
v(1)+v(2)=exp(7)sinh(2A7T) .
Its solution is
v(0)=e"cosh(2A7)—p ,
v(l)=[—e "+p-+eTsinh(2A7)]/2,
(4.29)

v(2)=[e "—p-+eTsinh(2A7)]/2 ,
v(3)=[e "+p—eTsinh(2A7)]/2,

where p is an adjustable parameter whose bound is given
by
p <minfe"cosh(2A7),e ""+e sinh(2A7)} . (4.30)

The maximal cluster number guideline suggests that we
take

p =e" cosh(2AT) (4.31)
in the case of XY-like anisotropy and
p=e "+e sinh(2A7) (4.32)

in the case of Ising-like anisotropy. As a result, the label-
ing probabilities become the ones shown in Table IIT and
Table IV.

We note that in both the ferromagnetic and the antifer-
romagnetic cases, the binding of two loops cannot be
avoided for Ising-like anisotropy (A <1). In other words,
the clusters formed in the case of Ising-like models are
not simple closed loops. Roughly speaking, the clusters in
this case are “bulkier” than those in XY-like models and
spread out more in the horizontal (real-space) direction.
This situation is natural, when we note that in the ex-
tremal anisotropy case, i.e., in the case of purely classical
Ising models, a cluster in the Swendsen-Wang algorithm

occupies a wide region of the space. We can show that
this naive relation between the present algorithm and the
Swendsen-Wang algorithm can be stated more clearly as
follows.

When we take the classical limit, i.e., the limit of A—0,
the local weight factors in the ferromagnetic case are

w()=w(1)=~exp(7),

w(2)=w(2)=~exp(—7), (4.33)

w(3)=w(3)=0.

If we draw so-called worldlines by connecting the sites on
which the local variables have the same value, these
worldlines become straight lines because the probability
of “bending” a worldline is proportional to w(3) and is
vanishing. A straight worldline of 1’s corresponds to an
up spin in the classical Ising model and a worldline of 0’s
corresponds to a down spin. The nonvanishing labeling
probabilities are

pO|D=p(OT)=1—e"?", (4.34)
p3I)=p@3[T)=e™?", (4.35)
p(312)=p(3]2)=1. (4.36)

Now we will consider the situation where 7 is small,
and hence the Suzuki-Trotter approximation is a good
one and we are in the quantum limit. In such a case,
p(0|1)=27 and is much smaller than p(3]|1)=~1—27.
Therefore, the labeling probabilities listed above indicate
that we should assign the third label to almost all the pla-
quettes. In other words, any one of the resulting loops is
almost identical to one of worldlines, except for some
that are bound to each other with a small probability.
Two kinds of loops are formed: ones for which the un-
derlying worldlines are up spins and the ones for which
the underlying worldlines are down spins. Two adjacent
loops (i.e., straight lines) of the same kind are bound to
each other at the plaquette between them with a probabil-
ity 1—e ~?". As a result, the probability for two neigh-

TABLE II. The labeling probabilities for Ising-like ferromagnets.

b=0 b=1 b=2 b=3
a=1,1 1—e 2172 0 e “27sinh(2A7) e " cosh(2A7)
a=2,2 0 0 0 1
a=3,3 0 0 1 0
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TABLE III. The labeling probabilities for XY-like antiferromagnets.

b=0 b=1 b=2 b=3
_ 207 21-A)r
a=1,1 0 0 A—e” 777 Ate” 777
2 2
_ 2147 2A1—A)r
e=23 0 ety 0 _tretihr
2e*" cosh(2A7) 2e“" cosh(2A7)
_ 21+A)7 _,20-Mr
=33 0 ety et 0
2e“"sinh(2A71) 2e*"sinh(2A71)

boring loops of the same kind not to be bound to each
other becomes

(e 72ym=e ", (4.37)
since there are m shaded plaquettes between two adjacent
straight lines.

To summarize, in the classical limit, we assign a verti-
cal line to each site in the original representation and
bind two adjacent lines of the same kind with the proba-
bility 1—e ~%#. This construction is exactly the same as
the ordinary Swendsen-Wang algorithm for classical Is-
ing models if we interpret worldlines of 0’s as down spins
and worldline of 1’s as up spins. By a similar argument,
we can show that the A—0 limit of our algorithm for the
antiferromagnetic case reduces to the Swendsen-Wang al-
gorithm for the antiferromagnetic Ising model. Thus, the
present cluster algorithm is the extension of the
Swendsen-Wang algorithm to quantum spin problems
with § =1. Although the critical slowing down in the
quantum simulation of a § =3 system has not been ex-
tensively studied so far, obviously such a difficulty will
exist. The present algorithm will be essential for reduc-
ing the difficulty in such simulations.

V. CONCLUDING REMARKS

We have discussed the development of cluster algo-
rithms from the viewpoint of probability theory and not
from the usual viewpoint of a particular model. One of
our motivations was to define general procedures for con-
structing clusters that are independent of the effective
Hamiltonian and interaction concepts used by Kandel
and Domany [4]. By using the perspective of probability
theory, we clearly detailed the nature of a cluster algo-
rithm, made explicit the assumptions embodied in all
clusters of which we are aware, and defined the steps for
the construction of a free-cluster algorithm. We illustrat-
ed these procedures by rederiving the Swendsen-Wang al-
gorithm, presenting the details of the loop algorithm for a

worldline simulation of a quantum S =1 model, and pro-
posing a free-cluster version of the replica method for the
Ising glass.

Within the perspective of probability theory, we em-
phasized defining the labeling scheme embodied by the
function 8(a,b) and the flipping weights v (b) of the clus-
ters, as they are actually the only things that one needs,
instead of specifying the labeling probabilities, which is
often done. By this shift in emphasis, we showed that the
development of a cluster algorithm reduces to the solu-
tion of a linear system of equations that is generally un-
derdetermined. A solution to this linear system is not
guaranteed, but we are always able to find at least one
solution by adding additional labels, if necessary. When
multiple free-cluster solutions exist, if we choose the one
that should produce the largest number of clusters, we
then typically recover existing algorithms, like the
Swendsen-Wang algorithm, and can also develop new
free-cluster algorithms, like the one for the Ising glass
(Sec. IV B). With this approach, the development of a
cluster algorithm is reduced to picking a solution of these
equations (after one has specified the labeling).

We have presented the details of nontrivial examples of
how one might obtain free-cluster algorithms for several
different systems, including a quantum mechanical prob-
lem and a spin-glass model. For these systems, the poten-
tial algorithms had a few free parameters, which were
easily determined by the rule that as many clusters as
possible should be performed. In other cases, they may
be determined uniquely by eliminating a certain set of
possible labels from consideration. For cases tested to
date, we are receiving superior performance. In the Ap-
pendix, we propose a more “black-box” approach: max-
imizing the information theory entropy under the con-
straints of normalization and the linear system. For the
Ising model and the Swendsen-Wang labeling, we find an
algorithm similar to Swendsen-Wang’s method.

A crucial condition for cluster algorithms developed so
far appears to be the decomposability of W(A4) into a

TABLE IV. The labeling probabilities for Ising-like antiferromagnets.

b=0 b=1 b=2 b=3
a=1,1 0 0 1
25 Q201-2r_ 2 o 1
a = y ———— t ——————————————
_ e2"cosh(2A7) an 4 e cosh(2A7)
a=3,3 0 1 0 0
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product [J;w(a;). As we argued, this condition is not
very restrictive. All classical systems we can think of
satisfy it, but some methods for simulating quantum
states do not. What our formalism, or any other one,
leaves unspecified is the labeling.

Specifying the labeling is the heart of the problem.
Choosing labels that create clusters that approximate the
large-scale coherent structures consistent with the actual
physical behavior seems a natural thing to do. In gen-
eral, this identification might be difficult because it re-
quires understanding some aspects of the answer before
attempting the solution. For some algorithms, like the
methods for the six-vertex model [11] and worldline
method for fermions [12] and quantum spins [14], creat-
ing loops have proven to be effective and natural. The
motivation for these latter algorithms was in part to
maintain a local conservation condition. More recently,
in a worldline method of general quantum Heisenberg
spins [13], the importance of a conservation condition
again appears. Loops, instead of clusters, appear. This
appearance underscores once again the need for a gen-
eralized approach to the cluster algorithms we presented:
The presented approach is free from a specific model and
concepts that might be unnatural for the problem at
hand.

For several systems, creating loops has been proven to
be very effective. These systems include the work of Kan-
del, Ben-Av, and Domany [3] on the fully frustrated Ising
model, the work of Evertz, Luna, and Marcu [11] on the
six-vertex model, and our recent work on fermion and
quantum spin models. We recall our discussion of the
S =L1XXZ model. In this model, for the procedures fol-
lowed, whether we obtained a cluster or loop algorithm
depended on the anisotropy. This result is surprising and
illustrates that the goal of a cluster algorithm perhaps
should not be constructing clusters or loops but rather
creating whatever large-scale coherent structures are con-
venient and effective.

Besides the work of Kandel and Domany, we would
like to acknowledge several other works that make points
related to ours. In the context of bond percolation, Ising
cluster dynamics, Tamayo and Brower [15] have
remarked that the cluster process can be viewed as a
Monte Carlo process involving a joint probability func-
tion for the Ising variables and labels. They also pointed
out that the Swendsen-Wang algorithm was not a unique
way to produce a cluster algorithm for the Ising model
and proceeded to develop other free-cluster algorithms,
one of which they demonstrated had higher efficiency.
Their procedures, derived from the Kandel-Domany per-
spective, also lead to an underdetermined system of equa-
tions. Choosing the flipping weights, and not the labeling
probabilities, is implicit in the work of Tamayo and
Brower and also in the work of Evertz, Luna, and Marcu
on the six-vertex model. It is explicit in the very recent
work by Coddington and Han on the fully frustrated Is-
ing model. In all these cases, the authors are lead to an
underdetermined linear system of equations for which
more than one acceptable solution exists. In developing
the algorithms for the six-vertex model, Evertz, Luna,
and Marcu [11] used what they called “the principle of

minimal freezing” to avoid the algorithm from producing
unfavorable large clusters. Coddington and Han [16] also
searched for solutions that avoid the production of large
clusters. Thus, these workers, as ourselves, have demon-
strated how to produce free-cluster algorithms and possi-
bly to avoid ones with unfavorable large clusters. We all
have avoided the pitfalls of naive generalizations of the
Swendsen-Wang algorithm commented upon by Kandel
and Domany [4]. The unstatisfied challenge is how to find
the optimal algorithm.
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APPENDIX

Another approach for solving (3.18), and making it
more of a “black-box”’procedure, is to exploit the a priori
knowledge that

Sv(b)8(a,b)

Pr(b)=———

> v(b)dla,b)

ab

is a probability and use the principle of maximum entro-
py to assign these probabilities [5]. With this approach,
the problem reduces to maximizing

O=—3Pr(b)InPr(b)+A [zPr(b)—l ]
b b

+ 37, Pr(a)—Ed(a,b)Pr(b)] (A1)
a b

with respect to the Pr(b). In this equation, the A and 7,

are Lagrange multipliers and

d(a,b)=68(a,b)/n(b), (A2)

where n(b)=73,68(a,b). The first term in (Al) is the
information-theory entropy term. In the absence of the
remaining terms, maximization would result in the prob-
abilities Pr(b) appearing with equal weight. The second
term constrains the solution to be normalized, and the
third term constrains the solution to satisfy the linear
equation for (3.18).
The maximization yields

Pr(b)=e —-Eﬂnad(a’b)/ze —za"lad(a,b)
b

and the 7, satisfy the following set of nonlinear equa-
tions:

Pr(a):zd(a,b)e_2"'"""““"”/29_E”W“dm’b) .
b

b

(A3)

(A4)

In general, these nonlinear equations require a numerical
solution; however, the zero-field Ising model is simple
enough that analytic solutions are possible. Using the re-
sults and definitions of Sec. IV A, we find for Pr(5) that
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Pr(1)=1/(1+p +p?), (AS)
Pr(2)=p%/(1+p +p?), (A6)
Pr(3)=p/(1+p +p?), (A7)

where p =[(1—r)*+(6r)!2—(1—r)]/4 and r=e .
For the Swendsen-Wang algorithm, one has from (4.8)

_1—r
Pr(1)=17", (A8)
Pr(2)=0, (A9)

Pr(3)=-2
T (A10)

The two solutions thus approach one another in the low
temperature limit. We have not made numerical tests of
differences in computational efficiency.
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FIG. 3. The labels and matrix elements 5(a|b) for the loop al-
gorithm for (a) ferromagnetic and (b) antiferromagnetic quan-
tum spin systems with §= 1.



